3.218 \(\int \frac{(e \tan (c+d x))^m}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=131 \[ \frac{2^{m-\frac{1}{2}} \left (\frac{1}{\sec (c+d x)+1}\right )^{m-\frac{1}{2}} (e \tan (c+d x))^{m+1} F_1\left (\frac{m+1}{2};m-\frac{3}{2},1;\frac{m+3}{2};-\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{d e (m+1) (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(2^(-1/2 + m)*AppellF1[(1 + m)/2, -3/2 + m, 1, (3 + m)/2, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a
*Sec[c + d*x])/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(-1/2 + m)*(e*Tan[c + d*x])^(1 + m))/(d*e*(1 +
m)*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.104877, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.04, Rules used = {3889} \[ \frac{2^{m-\frac{1}{2}} \left (\frac{1}{\sec (c+d x)+1}\right )^{m-\frac{1}{2}} (e \tan (c+d x))^{m+1} F_1\left (\frac{m+1}{2};m-\frac{3}{2},1;\frac{m+3}{2};-\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a},\frac{a-a \sec (c+d x)}{\sec (c+d x) a+a}\right )}{d e (m+1) (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Tan[c + d*x])^m/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2^(-1/2 + m)*AppellF1[(1 + m)/2, -3/2 + m, 1, (3 + m)/2, -((a - a*Sec[c + d*x])/(a + a*Sec[c + d*x])), (a - a
*Sec[c + d*x])/(a + a*Sec[c + d*x])]*((1 + Sec[c + d*x])^(-1))^(-1/2 + m)*(e*Tan[c + d*x])^(1 + m))/(d*e*(1 +
m)*(a + a*Sec[c + d*x])^(3/2))

Rule 3889

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(2^(m
 + n + 1)*(e*Cot[c + d*x])^(m + 1)*(a + b*Csc[c + d*x])^n*(a/(a + b*Csc[c + d*x]))^(m + n + 1)*AppellF1[(m + 1
)/2, m + n, 1, (m + 3)/2, -((a - b*Csc[c + d*x])/(a + b*Csc[c + d*x])), (a - b*Csc[c + d*x])/(a + b*Csc[c + d*
x])])/(d*e*(m + 1)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{(e \tan (c+d x))^m}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac{2^{-\frac{1}{2}+m} F_1\left (\frac{1+m}{2};-\frac{3}{2}+m,1;\frac{3+m}{2};-\frac{a-a \sec (c+d x)}{a+a \sec (c+d x)},\frac{a-a \sec (c+d x)}{a+a \sec (c+d x)}\right ) \left (\frac{1}{1+\sec (c+d x)}\right )^{-\frac{1}{2}+m} (e \tan (c+d x))^{1+m}}{d e (1+m) (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [F]  time = 9.73783, size = 0, normalized size = 0. \[ \int \frac{(e \tan (c+d x))^m}{(a+a \sec (c+d x))^{3/2}} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(e*Tan[c + d*x])^m/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

Integrate[(e*Tan[c + d*x])^m/(a + a*Sec[c + d*x])^(3/2), x]

________________________________________________________________________________________

Maple [F]  time = 0.251, size = 0, normalized size = 0. \begin{align*} \int{ \left ( e\tan \left ( dx+c \right ) \right ) ^{m} \left ( a+a\sec \left ( dx+c \right ) \right ) ^{-{\frac{3}{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(3/2),x)

[Out]

int((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(3/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \tan \left (d x + c\right )\right )^{m}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((e*tan(d*x + c))^m/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a \sec \left (d x + c\right ) + a} \left (e \tan \left (d x + c\right )\right )^{m}}{a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(a*sec(d*x + c) + a)*(e*tan(d*x + c))^m/(a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \tan{\left (c + d x \right )}\right )^{m}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))**m/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((e*tan(c + d*x))**m/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e \tan \left (d x + c\right )\right )^{m}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*tan(d*x+c))^m/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((e*tan(d*x + c))^m/(a*sec(d*x + c) + a)^(3/2), x)